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The effect of viscosity on the stability of a
uniformly rotating liquid column in zero gravity
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An investigation of the linear temporal stability of a uniformly rotating viscous liquid
column in the absence of gravity is presented. The governing parameters are the
rotational Reynolds number Re and the Hocking parameter L, defined as the ratio
of surface tension to centrifugal forces. Though the viscosity-independent condition
L � (k2 + n2 − 1)−1 for stability to disturbances of axial wavenumber k and azimuthal
mode number n has been known for some time, the preferred modes, growth rates and
frequencies at onset of instability have not been reported. We compute these results
over a wide range of L–Re space and determine certain asymptotic behaviours in the
limits of L → 0, L → ∞ and Re → ∞. The computations exhibit a continuous evolution
toward known inviscid stability results in the large-Re limit and their ultimate
transition to an n= 1 spiral mode at small Re. While viscosity is shown to reduce
growth rates for axisymmetric disturbances, it also produces a destabilizing effect for
n= 2 planar and n= 1 spiral disturbances in certain regions of parameter space. A
special feature is the appearance of a tricritical point in L–Re space at which maximum
growth rates of the axisymmetric, n= 1 spiral, and n= 2 planar disturbances are equal.

1. Introduction
The stability of rotating liquid columns and jets is of interest for applications

to liquid atomization, combustion processes, dispersion of pressure liquified gases,
breakdown of vortex cores, and nozzle design for spray or coating processes, among
others. This investigation addresses specifically the effect of viscosity on the stability
of a uniformly rotating viscous liquid column with stress-free boundary conditions
in the absence of gravity. We seek the preferred modes of instability as a function
of two dimensionless parameters: L, the ratio of surface tension to centrifugal forces,
and Re, the ratio of inertia to viscous forces.

The initial work on this topic was pioneered by Rayleigh (1879, 1892) who
established stability criteria for stationary inviscid and viscous liquid columns in
the absence of gravity. Interest in this subject has been revived in the last fifty years
beginning with the work of Hocking & Michael (1959) who found that an inviscid
liquid column uniformly spinning at angular rotation rate Ω is stable to planar
disturbances of azimuthal mode number n provided

γ �
ρa3Ω2

n(n + 1)
(1.1)

where γ is surface tension, ρ is fluid density, and a is the undisturbed column radius.
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In a follow-on study to include the effect of viscosity, Hocking (1960) introduced
the dimensionless parameter

L =
γ

ρa3Ω2
, (1.2)

an inverse rotational Bond number that Weidman, Goto & Fridberg (1997) have
denoted the Hocking parameter. Hocking first showed that the criterion for stability
of an inviscid liquid column, and a highly viscous one, subject to axisymmetric
disturbances is given by

L �
1

k2 − 1
(1.3)

where k is the wavenumber normalized with column radius a. Hocking then
hypothesized that this stability criterion for the viscous column would be independent
of the rotational Reynolds number

Re =
a2Ω

ν
(1.4)

in which ν is the kinematic viscosity of the fluid. Hocking next proved that the
criterion for stability with respect to planar disturbances is the same in the limits
of large and small Re, namely L � 1/(n2 − 1). Though unable to determine stability
criteria at intermediate values of Re, he again argued that this criterion for planar
disturbances would suffice for all Reynolds numbers.

Soon thereafter Gillis (1961) proved Hocking’s conjecture, thereby confirming that
the criterion for planar disturbances is independent of viscosity. Thus, the stability of
planar disturbances for inviscid and viscous rotating liquid columns is given by the
criteria

L �
1

n(n + 1)
(inviscid), (1.5a)

L �
1

n2 − 1
(viscous). (1.5b)

Since the n= 1 planar disturbance is neutrally stable, the region of stability is governed
by n= 2 disturbances that for the inviscid case (1.5a) gives L � 1/6, while for the
viscous case (1.5b) gives a smaller region of stability L � 1/3. Explanations concerning
this non-intuitive result that viscosity decreases the range of stability have been given
by Hocking (1960) and Yih (1960). Also, it is important to realize that in the region
1/6 � L � 1/3 the invsicid n= 2 planar mode is neutrally stable.

Gillis & Kaufman (1962) subsequently considered the stability of a viscous rotating
liquid column subject to three-dimensional disturbances. They were the first to
ascertain the general stability criterion

L �
1

k2 + n2 − 1
(viscous) (1.6)

which is again independent of the Reynolds number. In a note added in proof, they
further showed that exchange of stability holds for axisymmetric disturbances. No
determination of the most unstable modes outside the range of stability (1.6) was given.

Three decades later, Weidman (1994) reported general stability criteria for a rotating
immiscible axisymmetric two-fluid system composed of an inner fluid core surrounded
by an annular fluid layer bounded by a rigid cylinder. The entire system was assumed
to be in uniform rotation, and both inviscid and viscous fluids were considered.
The inviscid problem depends on the Hocking parameter L, the two-fluid density
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ratio λ, and its radius ratio η while the viscous problem depends additionally on the
Reynolds number Re. Inter alia, Weidman (1994) proved that exchange of stability
for this two-fluid system holds for axisymmetric disturbances for both inviscid and
viscous liquids.

In a follow-on study, Weidman et al. (1997, hereafter referred to as WGF) computed,
for the inviscid two-fluid system described above, most unstable wavenumbers and
frequencies for all preferred modes over a large range of L, λ and η parameter space.
A subset of their results, the limiting case of a single rotating inviscid liquid column,
provides the framework for analysis of the viscous problem considered here. Two key
results from that inviscid investigation are pertinent to the present study. First, spiral
modes never dominate, leaving axisymmetric modes preferred for L > Lc and planar
modes preferred for L < Lc, where Lc = 0.1053. Second, the transitions Lt between
preferred n and n + 1 planar modes are given by

Lt =
1

3n(n + 1)
(n � 2) (inviscid). (1.7)

Stability studies on certain variants of the single- and two-fluid rotating columns
have appeared in the literature. Gillis & Suh (1962) investigated the stability of a
rotating system in which either a viscous or inviscid cylindrical column surrounds a
solid core. Eggers & Brenner (1999) investigated the nonlinear pinch-off phenomenon
in a uniformly spinning viscous liquid column. Dávalos-Orozco & Vázquez-Luis
(2003) extended the two-fluid inviscid results of WGF to likewise include a solid core.
Most recently, Ashmore & Stone (2004) considered the rotating immiscible two-fluid
column in the large-viscosity and quasi-static limits for application to the spinning
drop tensiometer.

From an experimental perspective, we find no published literature directly related
to the determination of growth rates for the rotating liquid column. However,
experimental investigations related to stationary liquid columns have been conducted.
Most notably, Donnelly & Glaberson (1965) as well as Goedde & Yuen (1970)
explored the capillary instability of viscous liquid jets and showed close agreement
between measured growth rate curves and those predicted by the linear stability
analyses of Rayleigh (1945) and Chandrasekhar (1961). The nonlinear breakup
processes were studied by Rutland & Jameson (1970) for the purpose of droplet
size prediction. Comparison of theoretical predictions with experimental observations
in that case showed only partial agreement in that satellite droplets, not predicted
by theory, were observed for dimensionless wavenumbers exceeding k = 0.7. The two
experimental investigations by Donnelly & Glaberson (1965) and Goedde & Yuen
(1970) suggest the possibility of exploring, via similar methods, the effect of viscosity
on the stability of rotating liquid columns.

It would appear that the role of viscosity has been theoretically established for the
rotating liquid column, i.e. its effect is simply to increase the range of unstable planar
modes. However, with the exception of the Reynolds number variation of growth
rates for viscous planar modes computed at three values of L plotted in Gillis (1961),
we are not aware of any computations carried out to ascertain preferred modes of
instability. The results presented in this study close the knowledge gap by identifying
the most unstable modes, wavenumbers, and frequencies over the entire region of
L–Re parameter space. A further goal is to pinpoint how viscosity modifies the
surface-tension-driven instability of an inviscid rotating liquid column.

The presentation begins with the problem formulation for linearized temporal
disturbances in § 2. Analytic solutions for the velocity and pressure fields lead
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Figure 1. Section of an infinitely long liquid column with undisturbed radius a rotating at
uniform angular velocity Ω showing the cylindrical coordinates and position of the disturbed
free surface r∗ = a + η∗(θ, z∗; t∗).

to a general viscous eigenvalue equation for three-dimensional disturbances. The
associated limiting forms for the inviscid case, as well as the reduced forms for
viscous axisymmetric (n= 0) and viscous planar (k = 0) disturbances are given in § 3.
Numerical results demonstrating asymptotic consistency with previous work, and the
effect of viscosity, are presented in § 4. A brief discussion of results and concluding
remarks are given in § 5.

2. Problem formulation
A liquid column of density ρ and kinematic viscosity ν, rotating at uniform angular

velocity Ω in the absence of gravity is depicted in figure 1. Relative to the rotating
frame of reference, cylindrical polar coordinates r∗ =(r∗, θ , z∗) and coordinate
velocities u∗ =(u∗, v∗, w∗) are employed. Fluid motion in this rotating frame is
governed by the incompressible continuity and Navier–Stokes equations

∇∗ · u∗ = 0, (2.1a)

Du∗

Dt∗ + 2(Ω∗ × u∗) = − 1

ρ
∇∗p∗ +

1

2
∇|u∗ × r∗|2 + ν∇∗2u∗. (2.1b)

Scaling lengths with a, velocities with aΩ , time with Ω−1, and pressure with ρa2Ω2,
the component equations may be written

∂u

∂r
+

u

r
+

1

r

∂v

∂θ
+

∂w

∂z
= 0, (2.2a)
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∂u

∂t
+ (u · ∇)u − v2

r
− 2v = − ∂

∂r

(
p − r2

2

)
+

1

Re

(
∇2u − u

r2
− 2

r2

∂v

∂θ

)
, (2.2b)

∂v

∂t
+ (u · ∇)v +

uv

r
+ 2u = −1

r

∂p

∂θ
+

1

Re

(
∇2v − v

r2
+

2

r2

∂u

∂θ

)
, (2.2c)

∂w

∂t
+ (u · ∇)w = −∂p

∂z
+

1

Re
∇2w, (2.2d )

where (r , θ , z) are dimensionless polar coordinates; (u, v, w) are dimensionless
velocities in the direction of unit vectors (er , eθ , ez), respectively; p is the dimensionless
pressure; Re= a2Ω/ν is the rotational Reynolds number; and ∇ and ∇2 are the
cylindrical gradient and Laplacian operators

∇ =
∂

∂r
er +

1

r

∂

∂θ
eθ +

∂

∂z
ez, ∇2 =

1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (2.3)

2.1. Linearized disturbance equations

The base state in the rotating frame of reference is one of zero velocity and undisturbed
free surface located at r∗ = a, in which case the dimensional governing equations (2.1b)
reduce to a single equation for the radial pressure distribution

dp∗

dr∗ = ρΩ2r∗. (2.4)

Integrating, taking into account the capillary pressure jump p∗ = γ /a at r∗ = a, where
γ is the surface tension, gives, upon converting to dimensionless variables, the base-
state pressure distribution

p(r) = L + 1
2
(r2 − 1) (2.5)

where L = γ /ρa3Ω2 is the Hocking parameter adopted to measure the effect of
surface tension, which is the cause of instability in both rotating and non-rotating
liquid columns.

Introducing arbitrary small disturbances to the base state, substituting into the
governing equations, neglecting second-order terms, and eliminating the base-state
solution gives the dimensionless linearized disturbance equations

∂u

∂r
+

u

r
+

1

r

∂v

∂θ
+

∂w

∂z
= 0, (2.6a)

∂u

∂t
− 2v = −∂p

∂r
+

1

Re

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+

1

r2

∂2u

∂θ2
− 2

r2

∂v

∂θ
+

∂2u

∂z2

)
, (2.6b)

∂v

∂t
+ 2u = −1

r

∂p

∂θ
+

1

Re

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+

1

r2

∂2v

∂θ2
− 2

r2

∂u

∂θ
+

∂2v

∂z2

)
, (2.6c)

∂w

∂t
= −∂p

∂z
+

1

Re

(
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
+

∂2w

∂z2

)
. (2.6d )

These equations are to be solved with regularity and free surface conditions

u, v, w, p finite (r = 0), (2.7a)

u − ∂η

∂t
= 0 (r = 1), (2.7b)

p +

[
η + L

(
η +

∂2η

∂θ2
+

∂2η

∂z2

)]
− 2

Re

∂u

∂r
= 0 (r = 1), (2.7c)
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1

r

∂u

∂θ
− v

r
+

∂v

∂r
= 0 (r = 1), (2.7d )

∂u

∂z
+

∂w

∂r
= 0 (r = 1), (2.7e)

where the position r = 1 + η(θ, z; t) of the disturbed free surface has been linearized
to r = 1. Equation (2.7b) states that the free surface moves with the fluid, (2.7c) is
continuity of normal stress at the free surface, and (2.7d, e) state that tangential stress
components τrz and τrθ vanish at the free surface.

2.2. Temporal stability analysis

The normal modes for disturbances that grow in time are posited as⎛
⎝u

p

η

⎞
⎠ =

⎡
⎣U(r)

P (r)
A

⎤
⎦ est+i(nθ+kz) (2.8)

where n is the azimuthal mode number, k is the dimensionless axial wavenumber,
A is the disturbance amplitude, and s = σ + iω is the dimensionless complex growth
rate in which σ is the real growth rate and ω is the frequency. All kinematics
of the disturbances, including axial phase speed, rotational phase speed, and spiral
inclination angle, may be calculated from the assumed modal form (2.8); see Appendix
A of Ali (1988). Of interest for the presentation of results in § 4 is the dimensionless
phase speed Cθ at which planar and spiral disturbances rotate around the z-axis

Cθ = −rω

n

∣∣∣
r=1

= −ω

n
, (2.9)

relative to the rotating reference frame.
Substituting (2.8) into the linearized disturbance equations (2.6) yields

sU − 2V = −dP

dr
+

1

Re

(
d2U

dr2
+

1

r

dU

dr
− 1

r2
U − n2

r2
U − 2in

r2
V − k2U

)
, (2.10a)

sV − 2U = − in

r
P +

1

Re

(
d2V

dr2
+

1

r

dV

dr
− 1

r2
V − n2

r2
V +

2in

r2
U − k2V

)
, (2.10b)

sW = −ikP +
1

Re

(
d2W

dr2
+

1

r

dW

dr
− n2

r2
W − k2W

)
, (2.10c)

dU

dr
+

1

r
U +

in

r
V + ikW = 0, (2.10d )

and corresponding boundary conditions (2.7) become

U, V, W, P finite (r = 0), (2.11a)

U − sA = 0 (r = 1), (2.11b)

P + A[1 + L(1 − n2 − k2)] − 2

Re

dU

dr
= 0 (r = 1), (2.11c)

inU − V +
dV

dr
= 0 (r = 1), (2.11d )

ikU +
dW

dr
= 0 (r = 1). (2.11e)

Note that viscosity appears via Re in both the disturbance equations (2.10a–c) and in
the boundary condition (2.11c) for continuity of normal stress at the free surface.
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2.3. Solution of the disturbance equations

The modal form of the linearized disturbance equations (2.10) may be rearranged to
give

d2U

dr2
+

1

r

dU

dr
−

(
n2 + 1

r2
+ k2 + sRe

)
U = −Re

dP

dr
−

(
2Re − 2in

r2

)
V, (2.12a)

d2V

dr2
+

1

r

dV

dr
−

(
n2 + 1

r2
+ k2 + sRe

)
V =

in

r
ReP +

(
2Re − 2in

r2

)
U, (2.12b)

d2W

dr2
+

1

r

dW

dr
−

(
n2

r2
+ k2 + sRe

)
W = ikReP, (2.12c)

dU

dr
+

1

r
U +

in

r
V + ikW = 0. (2.12d )

The operator on the left-hand side of (2.12c) suggests that solutions for W (r) and
P (r) may be found in terms of modified Bessel functions of order n. Insertion of P (r)
so determined into (2.12a) and (2.12b) then gives solutions for U (r) and V (r). In this
manner one obtains disturbance velocity and pressure fields, regular on the axis of
symmetry, given by

U (r) = ψ

[
(α2 − k2 − sRe)I ′

n(αr) − 2iRe
n

αr
In(αr)

]
, (2.13a)

V (r) = −iψ

[
2iReI ′

n(αr) − (α2 − k2 − sRe)
n

αr
In(αr)

]
, (2.13b)

W (r) = ikIn(αr), (2.13c)

P (r) =

(
α2 − k2 − sRe

Re

)
In(αr), (2.13d )

where

ψ =
α(α2 − k2 − sRe)

[(α2 − k2)2 − 2(α2 − k2)sRe + Re2(s2 + 4)]
. (2.13e)

Finally, substitution of this velocity field into (2.12d) shows that the continuity
equation is satisfied only for values of α satisfying

α6 − (3k2 + 2sRe)α4 + (k2 + sRe)(3k2 + sRe)α2 − k2[(k2 + sRe)2 + 4Re2] = 0. (2.14)

At this point it appears that there are six independent solutions for the velocity and
pressure fields. However, using the symmetry properties of modified Bessel functions,
one can readily show that for n odd, U , V , W , P and all their higher derivatives are
antisymmetric in α, while for n even they are all symmetric in α. Hence, there are
only three independent solutions of the disturbance equations.

2.4. The eigenvalue equation

From (2.14) there exists three roots α2
i (i =1, 2, 3). Owing to the above observation

regarding solution symmetries, we associate the positive αi roots with the three linearly
independent solutions of U , V , W , P . The linear combination of the three solutions
for each primitive variable constitutes their general solution. Evaluation of the free
surface boundary conditions (2.11b–e) then gives rise to a set of three homogeneous
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algebraic equations. A non-trivial solution of this system is obtained provided∣∣∣∣∣∣∣∣∣∣∣∣

P1 +
β

s
U1 − 2

Re

dU1

dr
inU1 − V1 +

dV1

dr
ikU1 +

dW1

dr

P2 +
β

s
U2 − 2

Re

dU2

dr
inU2 − V2 +

dV2

dr
ikU2 +

dW2

dr

P3 +
β

s
U3 − 2

Re

dU3

dr
inU3 − V3 +

dV3

dr
ikU3 +

dW3

dr

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.15)

where Ui , Vi , Wi , their derivatives, and Pi , are all evaluated at r = 1 and β = 1+L(1−
n2 − k2). This is the same as the result obtained by Gillis & Kaufman (1962), but
now written in the rotating reference frame using our dimensionless variables. They
performed some numerical calculations and therefrom deduced the general stability
criterion given by (1.6). The three roots α2 of (2.14) are

α2
i =

1

3
(3k2 + 2sRe) − ai

s2Re2

6F (Re; s, k)
− bi

F (Re; s, k)

6
(2.16a)

where

a1 = b1 = −2, a2,3 = 1 ∓ i
√

3, b2,3 = 1 ± i
√

3 (2.16b)

and

F (Re; s, k) = Re2/3(54k2 − s3Re + 6k
√

3(27k2 − s3Re))1/3. (2.16c)

Note that setting k = 0 in (2.14) gives the double root α2 = sRe and the trivial root
α2 = 0. The fact that these roots are not recovered as k → 0 in (2.16) shows that
this limit is non-uniform. We return to this point in § 3.3. Thus for k 	= 0, one may
substitute (2.13) and (2.16) into (2.15) to obtain the eigenvalue equation and explore
the stability of three-dimensional disturbances in L–Re parameter space.

3. Limiting cases
3.1. Inviscid limit

The general eigenvalue equation for the inviscid problem may be recovered directly
from its viscous counterpart. Taking the limit Re → ∞ of (2.14) and solving for α2

yields

α2 =
k2

s2
(s2 + 4). (3.1)

Similarly, the limit as Re → ∞ of (2.13) gives

U (r) =
α

s2 + 4

[
s2I ′

n(αr) +
2ins

αr
In(αr)

]
, (3.2a)

V (r) =
iα

s2 + 4

[
2isI ′

n(αr) +
ns2

αr
In(αr)

]
, (3.2b)

W (r) = ikIn(αr), (3.2c)

P (r) = −sIn(αr), (3.2d )

and (2.11b,c) yield the combined kinematic–dynamic free surface condition

P +
U

s
[1 + L(1 − n2 − k2)] = 0 (r = 1). (3.3)
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Using (3.2), equation (3.3) may be evaluated at r = 1 to furnishe the inviscid eigenvalue
equation

α
I ′
n(α)

In(α)
−

[
(s2 + 4)

1 + L(1 − n2 − k2)
− 2in

s

]
= 0, (3.4)

in agreement with WGF.

3.2. Viscous axisymmetric disturbances

Setting n = 0 in (2.13) gives the reduced form of the velocity and pressure fields for
axisymmetric disturbances

U (r) =
α(α2 − k2 − sRe)2

[(α2 − k2)2 − 2(α2 − k2)sRe + Re2(s2 + 4)]
I ′
0(αr), (3.5a)

V (r) =
2αRe(α2 − k2 − sRe)

(α2 − k2)2 − 2(α2 − k2)sRe + Re2(s2 + 4)
I ′
0(αr), (3.5b)

W (r) = ikI0(αr), (3.5c)

P (r) =
α2 − k2 − sRe

Re
I0(αr). (3.5d )

Setting n= 0 in (2.15) gives the reduced eigenvalue equation for axisymmetric
disturbances ∣∣∣∣∣∣∣∣∣∣∣∣

P1 +
β

s
U1 − 2

Re

dU1

dr
−V1 +

dV1

dr
ikU1 +

dW1

dr

P2 +
β

s
U2 − 2

Re

dU2

dr
−V2 +

dV2

dr
ikU2 +

dW2

dr

P3 +
β

s
U3 − 2

Re

dU3

dr
−V3 +

dV3

dr
ikU3 +

dW3

dr

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.6)

where the velocities, pressures and appropriate derivatives are determined from (3.5),
evaluated at r = 1. The three values of α2 are still those given by (2.16), but now the
axisymmetric form β = 1 + L(1 − k2) is used in (3.6).

3.3. Viscous planar disturbances

Direct reduction to the planar eigenvalue equation cannot be obtained by setting k =0
in (2.13) and (2.14) since the only non-trivial (double) root α2 = sRe found from (2.14)
gives ψ = 0 in (2.13e), which yields a trivial solution for the disturbance velocities in
(2.13a, b). This is related to the zero-wavenumber non-uniformity discussed in § 2.4.
Consequently, it is far easier to return to the modal form of the linearized disturbance
equations (2.10) and boundary conditions (2.11), therein set k = 0, and solve the
resulting equations. Following this procedure, one finds the disturbance velocity and
pressure fields

U (r) = A
in

r
In(αr) + Brn, (3.7a)

V (r) = −AαI ′
n(αr) − Bnrn−1, (3.7b)

P (r) = −2AIn(αr) − Bi(s − 2i)rn, (3.7c)

in which α2 = sRe and W (r) is set to zero without loss of generality. It is important
to note that the regularity condition used to obtain solutions (3.7) requires n � 0
and hence no negative n solutions exist. Boundary constraints (2.11b–e) may be
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consolidated into a combined kinematic–dynamic free surface condition and a single
free stress condition, namely

P + β
U

s
− 2

Re

dU

dr
= 0 (r = 1), (3.8a)

inU − V +
dV

dr
= 0 (r = 1), (3.8b)

where now the planar form β = 1 + L(1 − n2) is to be employed. Inserting (3.7) into
(3.8) yields, after evaluation at r = 1, the viscous planar eigenvalue equation[

α2 + 2n − 2α
I ′
n(α)

In(α)

]
[α4 + 2(n2 − 1)α2 − 2iα2Re − nβRe2] − 2n(n − 1)2α4 = 0. (3.9)

This reproduces the eigenvalue equation obtained by Hocking (1960) for viscous
planar disturbances, after one replaces s by s + in to transform from our rotating
reference frame to his stationary frame of reference.

4. Results
A comprehensive understanding of the stability of the rotating liquid column

requires an extensive numerical study of eigenvalue equation (2.15) for all n, k modes
of instability over a large range of parameters L and Re. We begin with separate
studies on the effect of viscosity for axisymmetric (n= 0) and planar (k = 0)
disturbances and then lead into fully three-dimensional (n 	= 0 and k 	=0) calculations.
The most unstable modes are those exhibiting the largest growth rates for given
parameter values. The underlying method of the numerical approach amounts to a
root search stepping through parameter space to obtain the complex growth rates
s for values of L, Re, n, and k. In the case of axisymmetric disturbances one can
obtain growth rate curves for specified values of L and Re by stepping through
values of k and solving the eigenvalue equation for the complex growth rate s. For
planar disturbances the approach is the same except that there is a single growth rate
for discrete values of n and each combination of L and Re. For three-dimensional
disturbances one can specify combinations of L and Re, step through values of n, at
each n step through values of k, and solve the eigenvalue equation for the complex
growth rates. Mathematica (Wolfram 1999) was used for all computations reported
here and the root search routine employed a modified secant method.

4.1. Viscous axisymmetric disturbances

Recalling that exchange of stability prevails for axisymmetric disturbances, one could
a priori set ω = 0. As a numerical check on this result, in the evaluation of eigenvalue
equation (3.6) we have allowed for s to be complex. Indeed, solution values of ω were
always numerically small, typically less than order 10−14. Growth rate curves σ = σ (k)
were computed for order of magnitude variations of Re and L. To guide our study,
we note that the general stability criterion given by (1.6) for n = 0 yields the cutoff
wavenumber

kcut =

√
1

L
+ 1 (4.1)

above which the viscous column is guaranteed to be stable, so the search is confined to
wavenumbers k < kcut. Many growth rate curves have been computed by Kubitschek
(2006); here we exhibit two plots in figures 2(a) and 2(b) for Re= 1.0 and 1000,
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Figure 2. Wavenumber variation of growth rates for axisymmetric disturbances at selected
values of L for (a) Re= 1.0 and (b) Re= 1000.
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Figure 3. Reynolds number variation of growth rates for axisymmetric disturbances at k = 1
showing the approach as Re → ∞ to the inviscid value σ1 = 0.43323 reported in WGF.

respectively, with L varying in order of magnitude from 0.01 to 100. These results
show that with L fixed, all growth rates increase with increasing Reynolds number, and
the effect is most evident when L is small. It is also clear that at k = 1 the growth rates
σ1 ≡ σ (k = 1) are independent of L, but vary with Re. We have computed the Reynolds
number variation of σ1 and show in figure 3 that it asymptotes smoothly to the value
σ1 = 0.433228 established by WGF for the inviscid liquid column. The L-variation
of maximum growth rates σm, at selected values of Re, and their corresponding
wavenumbers km, are displayed in figures 4(a) and 4(b). The lines connecting individual
computed points aid in visualizing the trends. The results demonstrate that, at each
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Figure 4. Summary of axisymmetric stability results showing the Hocking parameter variation
of (a) maximum growth rates and (b) most unstable wavenumbers at selected values of Re.

value of L, increasing viscosity decreases the growth rates for axisymmetric disturb-
ances and drives the most unstable wavenumber toward the long-wave limit k =0.

Consistency of our computations for axisymmetric disturbances of a rotating
column is provided by taking the Ω → 0 (L → ∞) limit and comparing results with
those obtained from Rayleigh’s (1892) eigenvalue equation for a stationary liquid
column given in the Appendix. This comparison requires a rescaling of σm that
eliminates Ω . The connection between the maximum growth rates σm plotted in
figure 15(a) and our maximum growth rates plotted in figure 4(a) is given by
σm = σm/L1/2. The limiting behaviours of the (rescaled) maximum growth rates and
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Figure 5. Hocking parameter variation of (a) rescaled maximum growth rates and (b) most
unstable wavenumbers at selected values of the Ohnesorge number Z showing the stationary
viscous column results given in figures 15(a, b).

most unstable wavenumbers at selected values of Ohnesorge number, defined as
Z = µ/(ρaγ )1/2, ranging in orders of magnitude from 0.001 to 100 are presented in
figures 5(a) and 5(b), respectively. It is clear that, as L → ∞, the maximum growth rates
and corresponding wavenumbers for the rotating column approach the stationary
column values shown by the dashed lines. Note the relatively fast convergence to
Rayleigh’s stationary liquid column results for Z small and large, compared to that
for O(1) values of Z.
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4.2. Viscous planar disturbances

Equation (3.9) governs stability of the viscous rotating liquid column with respect
to planar disturbances. Recall from § 3.3 that no planar modes exist for n< 0. Then,
according to criterion (1.6), the search for unstable planar modes is necessarily limited
to the segment 0 < L < 1/3 for all Reynolds numbers. Figures 6(a) and 6(b) show the
variation of planar growth rates σ and corresponding frequencies ω as a function
of L for variations of Re ranging in orders of magnitude from 0.1 to 1000 obtained
from solutions of (3.9). The stability boundaries shown at L =1/6 and L =1/3 in
figures 6(a), 6(b) and 6(c) are predicted from (1.5a) and (1.5b) for the inviscid and
viscous n= 2 cases, respectively. For L small, figure 6(a) shows that increasing Re
brings about the appearance of successively higher preferred modes. Thus, the small-
L behaviour for planar modes is in some sense analogous to that for axisymmetric
disturbances (see figure 4a), namely that increasing the viscosity reduces the growth
rate of the most unstable disturbance. Figure 6(b) displays the frequencies ω as a
function of L at four values of Re ranging in orders of magnitude from 1 to 1000. At
each Reynolds number, the largest frequency is attained by the lowest planar mode.
Calculations show that 0 <ω � 1.0 in all cases where planar disturbances are found
to be unstable. According to (2.9) the azimuthal phase speed of planar disturbances
is Cθ = −ω/n. Since ω > 0, we conclude that these disturbances are all retrograde, i.e.
they travel in the direction opposite to that of column rotation viewed in the rotating
frame of reference. Figure 6(b) also reveals that the ω = 1.0 limit is being achieved
for the n= 2 mode as Re → ∞, consistent with the computations reported in WGF.

Of particular interest are the results in figure 6(c) that compare n= 2 planar mode
growth rates for Re= 1000 with the inviscid results computed from the eigenvalue
equation reported in Hocking & Michael (1959), transformed to our rotating reference
frame. Only in the inviscid limit does the n= 2 planar growth rate become zero at
L =1/6, in which case that mode is neutrally stable in the region 1/6 � L � 1/3.
Thus our solution of the viscous eigenvalue equation confirms Hocking’s (1960)
observation that the effect of finite viscosity is to decrease the range of stability for
planar disturbances from L � 1/6 to L � 1/3.

4.3. Viscous three-dimensional disturbances

4.3.1. First spiral mode: n = 1

The most general case for the viscous rotating liquid column is obtained when both
n 	=0 and k 	= 0. The regularity condition at r = 0 leading to disturbance solutions
(2.13) establishes that it is sufficient to consider n> 0 only. In fact, the numerical
results demonstrate a symmetry in solutions with respect to the sign of n. If for positive
n one finds growth rates σ and frequencies ω, then negative n yields identical growth
rates σ but with frequencies −ω. Since the rotational speed of a spiral disturbance is
given by (2.9), both positive and negative values of n give the same growth rates and
identical retrograde motions.

The search for n= 1 unstable spiral modes is, according to stability criterion (1.6),
confined to wavenumbers k < kcut where

kcut =

√
1

L
(viscous). (4.2)

Figures 7(a) and 7(b) show the wavenumber variation of growth rates and frequencies
with Re at L =0.1. This value of L has been chosen to effect a comparison with
the inviscid results displayed in figures 4(a) and 4(b) of WGF where one finds that
the unstable wavenumbers for n= 1 fall in the range 0.5 <k <kcut and that the
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Figure 6. Hocking parameter variation of (a) preferred mode growth rates, (b) frequencies
for viscous planar disturbances at selected values of Re, and (c) a comparison of the variation
of the n= 2 viscous planar mode growth rate at Re= 1000 with the corresponding inviscid
result in the neighbourhood of L =1/6.
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Figure 7. Wavenumber variation of n= 1 spiral mode (a) growth rates and (b) frequencies
for selected values of Re at L = 0.1.

strip 0 � k � 0.5 is rendered neutrally stable. The general rise in growth rates with
decreasing Re in the segment 0 <k � 0.5 shows that viscosity destabilizes the neutral
inviscid spiral mode in this region. This phenomenon is akin to that found for planar
modes where inviscid neutrally stable disturbances become unstable when viscosity is
considered. Another key result is that σ → 0 as k → 0 for all Re, signifying that the
n=1 viscous planar mode is always neutrally stable, as it is for the inviscid rotating
liquid column.

Figures 8(a) and 8(b) show growth rates and frequencies at L = 10. Here the region
of neutral stability for inviscid disturbances (calculated from the inviscid eigenvalue
equation for the n= 1 spiral mode) has shrunk to 0 � k � 0.241. The σ (k) curve for



Effect of viscosity on stability of a uniformly rotating liquid column 277

σ

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.01

0.02

0.03

0.04

0.05

Re =1000

0.01

0.1

1.0
10

100

(a)

k

ω

0.2

0.4

0.6

0.8

1.0

Re = 1000

(b)

Figure 8. Wavenumber variation of n= 1 spiral mode (a) growth rates and (b) frequencies
for selected values of Re at L = 10.

Re = 1000 in figure 8(a) shows the smooth approach with increasing Reynolds number
to the k = 0.241 inviscid intercept. Note in figure 8(b) the evolution of the frequency
distribution, at this elevated value of L, to a nearly Re-independent linear variation
of ω with k.

The L variation of maximum growth rates σm, corresponding wavenumbers km,
and frequencies ωm for the n= 1 spiral disturbances are given in figures 9(a), 9(b)
and 9(c) respectively for order of magnitude variations of Re spanning the range 0.01
to 1000. Similar to the planar and axisymmetric disturbances, at small L the growth
rates increase monotonically with increasing Re; however, there exists an intermediate
range 0.5 < L < 8.0 where the growth rates at Re =0.01 are most unstable. Motivated
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Figure 10. Wavenumber variation of growth rates for the first five spiral modes at L = 0.01
for (a) Re= 0.1 and (b) Re= 10.0.

by the small-Re behaviour of the disturbance frequency at large values of L seen in
figure 9(c), we have endeavoured to compute the large-L, small-Re limit of ωm. The
result of this effort reveals, very accurately, the asymptotic limiting value ωm = 1/4.
This feature is plotted as a horizontal dashed line in figure 9(c).

4.3.2. Higher spiral modes: n � 2

The stability of higher spiral modes was considered and growth rate curves were
obtained for n= 2, 3, 4, 5. The results in figure 10 show two sets of spiral growth
rate curves at L =0.01, one at a small Reynolds number Re= 0.1 and the other at
the larger value Re= 10. The small-Re results in figure 10(a) show that the lowest
spiral mode is the most unstable uniformly in k. As Re increases, however, the higher
modes compete with the fundamental mode. For example, the results in figure 10(b)
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Figure 11. Wavenumber variation of (a) growth rates and (b) frequencies for the first three
spiral modes at L = 0.1 and Re= 1000 demonstrating the smooth trend toward the inviscid
results given in figures 4 and 5 of WGF.

at Re= 10 show that the n= 1 mode is most unstable in the range 4.18 <k < 10, the
n=2 mode is most unstable in the range 3.42 <k < 4.18, but it is the n= 3 mode
that dominates in the k → 0 (planar) limit. This is typical of all spiral modes n � 2,
indicating that if their maximum growth rate surpasses that of the n= 1 mode, it does
so at k = 0, i.e. they are planar modes. As a second example, we display growth rate
and frequency curves for n= 1, 2, 3 at L = 0.1 and Re= 1000 in figure 11 computed
for comparison with the corresponding L =0.1 inviscid results given in figures 4 and
5 of WGF. The large-Re growth rate and frequency curves for the first three spiral
modes further demonstrate that the transition to inviscid rotating column results is
continuous and smooth.

4.4. Mode competition

Having determined the most unstable axisymmetric, planar, and spiral modes, we are
now in position to determine which mode, at fixed values of L and Re, is preferred. The
Hocking parameter variation of σm for the competing planar (n � 2), axisymmetric
(n= 0) and spiral (n= 1) modes is plotted in figures 12(a), 12(b) and 12(c) for Re= 10,
1.0, 0.1, respectively. The results in figure 12(a) show that the column is dominated by
planar and axisymmetric disturbances for all L � 0.01 (the smallest value investigated
for non-zero k modes) with planar-to-axisymmetric mode transition at (Lc)1 = 0.1624.
At the smaller value Re =1.0 in figure 12(b) the growth rate of the first spiral mode
rises above the competing modes in the region (Lc)1 < L < (Lc)2 where (Lc)1 = 0.1371
and (Lc)2 = 0.2251. As the Reynolds number is decreased further to Re= 0.1 in
figure 12(c), the n= 2 planar mode is no longer in contention, leaving the n= 1 spiral
mode preferred up to (Lc)2 = 2.311, above which the axisymmetric mode dominates.
It is likely from the results in figures 12(a) and 12(b) that a tricritical point will
appear when (Lc)1 = (Lc)2 somewhere in the range 1.0 <Re< 10. An extensive search
to find the tricritical point was performed by stepping through Re-space using a
successive refinement approach and solving the eigenvalue equations for each mode
to obtain their maximum growth rates as functions of L. The search was terminated
when all maximum growth rates were found to be equivalent to within five digits at a
single point (Ltri, Retri) in parameter space. This procedure yields the result plotted in
figure 12(d) showing that Ltri = 0.1807 and Retri = 1.1666 (suspiciously close to 7/6) is
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Figure 12. Hocking parameter variation of maximum growth rates for competing planar,
axisymmetric, and n= 1 spiral modes at (a) Re= 10.0, (b) Re= 1.0, (c) Re= 0.1 and
(d) Retri = 1.1666. Numerical values for the planar–spiral crossovers (Lc)1 and the spiral–
axisymmetric crossovers (Lc)2 are also indicated.

the point at which the maximum growth rates for the axisymmetric, n= 1 spiral and
n= 2 planar modes attain the same value σm = 0.1523. In the parlance of dynamical
systems theory, the tricritical point is a co-dimension-two bifurcation. For Reynolds
numbers larger than Retri only planar and axisymmetric modes are preferred, so this
is the incipient Reynolds number below which the n= 1 spiral mode appears. The
existence of a spiral mode is a purely viscous result, since WGF have shown that
there are no preferred spiral modes for the inviscid rotating liquid column.

It now should be clear that three distinct bifurcation curves emanate from the
tricritical point to carve out three preferred mode regions in L–Re space. An algorithm
was developed to compute these transition boundaries by accurately determining
the intersection of maximum growth rate curves for competing modes. We denote
T01 as the axisymmetric–spiral transition boundary, T02 as the axisymmetric–planar
transition boundary, and T12 as the spiral–planar transition boundary. The results
are displayed as figure 13 in which computed points have been connected by lines
to aid in visualizing transition boundaries. This figure encapsulates all results of this
study. For order of magnitude values of Re and L in each preferred mode region,
one may find corresponding critical growth rates, wavenumbers and frequencies with
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of the L → ∞ asymptotic behaviour of the T01 transition boundary.

the aid of figure 4 for the axisymmetric mode, figure 6 for planar modes, and
figure 9 for the n= 1 spiral mode. From large-L and small-Re calculations of the T01

boundary, Kubitschek (2006) has found that the asymptotic behaviour is very closely
Re ∼ 0.5L−3/2 (L → ∞). Although this may be an exact asymptotic formula, we have
not been able to determine the result analytically. This asymptote is plotted as the
dashed line in figure 13.

An enlarged view of the region of preferred planar modes is presented in figure 14.
The inviscid planar mode transitions Lt given by (1.7) are plotted as vertical dashed
lines. Also plotted as a vertical dashed line is the transition Lc = 0.1053 separating
inviscid axisymmetric modes from inviscid n= 2 planar modes. As Re decreases,
the nearly vertical viscous planar mode transition boundaries bend around to form
horizontal transition boundaries. The asymptotic behaviour as L → 0 of these mode
transitions, here denoted as Ret , are readily calculated by setting L equal to zero
in the algorithms developed to compute relevant transition boundaries. In a similar
manner, the transition between the n= 1 spiral mode and the n= 2 planar mode,
here denoted Rec, has been numerically determined. The horizontal dashed lines in
figure 14 represent these transition behaviours as L → 0. It is important to note that
preferred higher planar modes (n> 6), not displayed in figures 13 and 14, appear in
succession and become more frequent as L decreases and Re increases, simultaneously.

5. Discussion and conclusion
Numerical calculations have been performed to map out growth rates, wavenumbers

and frequencies of the most unstable modes for a rotating viscous liquid column in
L–Re parameter space, where L is the Hocking parameter measuring the effect of
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Figure 14. Preferred planar mode boundaries in L–Re space showing both the asymptotic
Re → ∞ (inviscid) transition boundaries Lt and Lc marked by vertical dashed lines and the
asymptotic L → 0 (viscous) transition boundaries Ret and Rec marked by horizontal dashed
lines.

surface tension and Re is the rotational Reynolds number inversely measuring the
effect of viscosity. The search of parameter space confirmed, and was guided by,
the cutoff wavenumbers deduced from stability criterion (1.6) found by Gillis &
Kaufman (1962). WGF have shown that only planar and axisymmetric modes are
preferred in the inviscid limit, with axisymmetric modes appearing for L > Lc, where
Lc = 0.1053, and planar modes appearing when L < Lc with mode transitions given
by (1.7). One effect of adding a small amount of viscosity to the rotating column is to
eliminate the n → ∞ planar modes. As the Reynolds number decreases, successively
fewer planar modes are observed. Also, the planar–axisymmetric transition T02 varies
little from its inviscid value Lc. Figure 14 shows that when Re = 10, only the second
and third planar modes remain as L → 0, though at L = 0.01 one can find six planar
modes at sufficiently large values of Re. As the Reynolds number is reduced further
to Retri = 1.1666, the appearance of an n= 1 spiral mode marks the end of the
T02 boundary and the appearance of the planar–spiral T12 and axisymmetric–spiral
T01 transition boundaries emanating from the tricritical point; see figure 13. At
Re = 0.767 the T12 boundary disappears leaving only axisymmetric and first spiral
modes as Re → 0. The asymptotic behaviour of the T01 boundary separating these
remaining preferred modes is very closely Re ∼ 0.5L−3/2 as L → ∞.

The effect of viscosity is twofold. First, as noted by Hocking (1960), the region
of stability of viscous planar modes is reduced to L � 1/3 from the region L � 1/6
for the inviscid case – viscosity destabilizes the inviscid neutral n= 2 planar mode in
the region 1/6 < L < 1/3. The fundamental spiral mode is similarly affected, i.e. n=1
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neutral mode segments of wavenumber space are destabilized by viscosity. Secondly,
for wavenumbers away from these neutral mode segments, viscosity acts to stabilize
the flow, in the sense that maximum growth rates decrease with decreasing Reynolds
number. Likewise, viscosity reduces the maximum growth rates of axisymmetric modes
uniformly in L.

The fundamental new result is the existence of a broad regime of preferred spiral
instability in L–Re space. WGF have shown that for inviscid liquids, spiral modes
are not preferred in either the single-fluid or the two-fluid rotating column. Although
the n= 1 mode first appears at a single (tricritical) point in parameter space, it is the
only mode that persists as Re → 0, uniformly in L, except in the limit of a stationary
column in which case the mode of instability is axisymmetric in agreement with
Rayleigh (1892).

As an interesting aside, we note that an n= 3 retrograde spiral mode has been
reported by Sanmiguel-Rojas & Fernandez-Feria (2006) for liquid flowing vertically
down a tall narrow pipe discharging from a large concentric tank under the action
of gravity. However, the mechanism of instability in that confined system is not
surface tension, but instead the result of weak Coriolis forces that appear naturally
at mid-latitude.

Extensions of the present work are numerous. Certainly a study of the three-
dimensional instability of a two-fluid rotating viscous column with the approach
taken here would be of interest. More interesting, especially in relation to experimental
verification of our prediction of a tricritical point, would be to include the effect of
a non-rotating gaseous ambient surrounding a rotating liquid column with uniform
axial column translation. For this situation, the space of governing parameters would
be significantly increased to include, at least, viscosity and density ratios and an axial
Reynolds number. Moreover, the flow would become spatially dependent, warranting
consideration of spatio–temporal stability.

Appendix. The stationary viscous column
For consistency, we seek to confirm that results computed from the full three-

dimensional viscous rotating column coincide, in the proper limit, with the
stationary viscous column results derived from Rayleigh’s (1892) eigenvalue equation
for axisymmetric disturbances. That equation is reproduced here in its original
dimensional form

γ (1 − k2a2)

ρa3
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J ′
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= −2k2ν

[
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′a)

]
, (A 1)

incorporating the J0 Bessel function and its derivatives with complex arguments. Here
k is the dimensional wavenumber, k′2 = k2 + in/ν, and in is the dimensional growth
rate, our σ ∗. Equation (A 1) may be written in dimensionless form in terms of a single
parameter Z:

N1 + σ̄ZN2 − σ̄ 2N3 = 0, (A 2a)
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Figure 15. Stability results for a stationary viscous liquid column determined from Rayleigh’s
(1892) eigenvalue equation showing the Ohnesorge number variation of (a) maximum growth
rates and (b) most unstable wavenumbers. The horizontal dashed lines give their Z → 0
asymptotic behaviours.

where

N1 = iκ(1 − κ2)
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0(iκ), (A 2c)
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J0(iκ

′), (A 2d )

in which κ = ka is the dimensionless wavenumber, κ ′ = k′a such that κ ′2 = κ2 + σ̄ /Z,
and σ̄ = σ ∗(ρa3/γ )1/2. The single parameter governing axisymmetric stability of a
stationary viscous column is the Ohnesorge number Z = µ/(ρaγ )1/2 measuring the
ratio of viscous to surface tension forces; its appearance in the eigenvalue relation is
both explicit in (A 2a) and implicit through each appearance of κ ′. Other than what
can be interpolated from the nine listings in table LXII of Chandrasekhar (1961),
there appears to be no published results of maximum growth rates and most unstable
wavenumbers for the stationary viscous liquid column. Rayleigh (1892), however, did
analyse (A 1) in the large-viscosity limit appropriate for liquid glass threads to show
that “when viscosity is paramount long threads do not tend to divide themselves into
drops at mutual distances comparable with the diameter of the cylinder, but rather
to give way by attenuation at few and distant places”.

We have solved Rayleigh’s normalized eigenvalue equation (A 2) for the maximum
growth rates σm and corresponding wavenumbers km as a function of Ohnesorge
number Z. The maximum growth rates are plotted in figure 15(a), and the most
unstable wavemumbers, denoted here as km (≡κm), are shown in figure 15(b). These
results are used for comparison with the Ω → 0 limit of the rotating viscous liquid
column in § 4.1.
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